Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?
Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?
A Hamiltonian circuit is a continuous path in a graph that passes through each of the vertices exactly once and returns to the start.
How many Hamiltonian circuits can you find in these graphs?
Mike and Monisha meet at the race track, which is 400m round. Just to make a point, Mike runs anticlockwise whilst Monisha runs clockwise. Where will they meet on their way around and will they ever meet at the start again? If so, after how many circuits?