Search by Topic

Resources tagged with Generalising similar to Differs:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 125 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Generalising

problem icon

Happy Numbers

Stage: 3 Challenge Level: Challenge Level:1

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

problem icon

Reverse to Order

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

problem icon

Nim

Stage: 4 Challenge Level: Challenge Level:1

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The loser is the player who takes the last counter.

problem icon

Chocolate Maths

Stage: 3 Challenge Level: Challenge Level:1

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

problem icon

Nim-like Games

Stage: 2, 3 and 4 Challenge Level: Challenge Level:1

A collection of games on the NIM theme

problem icon

Converging Means

Stage: 3 Challenge Level: Challenge Level:1

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

problem icon

Three Times Seven

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

problem icon

Nim-interactive

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

problem icon

Repeaters

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

problem icon

Masterclass Ideas: Generalising

Stage: 2 and 3 Challenge Level: Challenge Level:1

A package contains a set of resources designed to develop pupils’ mathematical thinking. This package places a particular emphasis on “generalising” and is designed to meet the. . . .

problem icon

Seven Squares - Group-worthy Task

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

problem icon

Enclosing Squares

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you find sets of sloping lines that enclose a square?

problem icon

Card Trick 2

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you explain how this card trick works?

problem icon

Pentanim

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

problem icon

One, Three, Five, Seven

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

problem icon

Triangle Numbers

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Take a look at the multiplication square. The first eleven triangle numbers have been identified. Can you see a pattern? Does the pattern continue?

problem icon

Jam

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A game for 2 players

problem icon

AMGM

Stage: 4 Challenge Level: Challenge Level:1

Choose any two numbers. Call them a and b. Work out the arithmetic mean and the geometric mean. Which is bigger? Repeat for other pairs of numbers. What do you notice?

problem icon

Partitioning Revisited

Stage: 3 Challenge Level: Challenge Level:1

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

problem icon

Consecutive Negative Numbers

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

problem icon

Odd Differences

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

problem icon

Mind Reading

Stage: 3 Challenge Level: Challenge Level:1

Think of a number, add one, double it, take away 3, add the number you first thought of, add 7, divide by 3 and take away the number you first thought of. You should now be left with 2. How do I. . . .

problem icon

More Number Pyramids

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

problem icon

Arithmagons

Stage: 3 Challenge Level: Challenge Level:1

Can you find the values at the vertices when you know the values on the edges?

problem icon

More Twisting and Turning

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

It would be nice to have a strategy for disentangling any tangled ropes...

problem icon

Adding in Rows

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

problem icon

Elevenses

Stage: 3 Challenge Level: Challenge Level:1

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

problem icon

Multiplication Square

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

problem icon

Hypotenuse Lattice Points

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

problem icon

Loopy

Stage: 4 Challenge Level: Challenge Level:1

Investigate sequences given by $a_n = \frac{1+a_{n-1}}{a_{n-2}}$ for different choices of the first two terms. Make a conjecture about the behaviour of these sequences. Can you prove your conjecture?

problem icon

All Tangled Up

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you tangle yourself up and reach any fraction?

problem icon

GOT IT Now

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

problem icon

Steel Cables

Stage: 4 Challenge Level: Challenge Level:1

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

problem icon

Magic Letters

Stage: 3 Challenge Level: Challenge Level:1

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

problem icon

Intersecting Circles

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

problem icon

Mindreader

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

problem icon

Go Forth and Generalise

Stage: 3

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

problem icon

Steps to the Podium

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

It starts quite simple but great opportunities for number discoveries and patterns!

problem icon

Squares in Rectangles

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

problem icon

Got it for Two

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

Got It game for an adult and child. How can you play so that you know you will always win?

problem icon

What Numbers Can We Make Now?

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

problem icon

Problem Solving, Using and Applying and Functional Mathematics

Stage: 1, 2, 3, 4 and 5 Challenge Level: Challenge Level:1

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

problem icon

Route to Infinity

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you describe this route to infinity? Where will the arrows take you next?

problem icon

What Numbers Can We Make?

Stage: 3 Challenge Level: Challenge Level:1

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

problem icon

Building Gnomons

Stage: 4 Challenge Level: Challenge Level:1

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

problem icon

Jam

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

To avoid losing think of another very well known game where the patterns of play are similar.

problem icon

Lower Bound

Stage: 3 Challenge Level: Challenge Level:1

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

problem icon

Sliding Puzzle

Stage: 1, 2, 3 and 4 Challenge Level: Challenge Level:1

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

problem icon

Got It

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

problem icon

Mini-max

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .