This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

A Sudoku that uses transformations as supporting clues.

Find out about Magic Squares in this article written for students. Why are they magic?!

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Remember that you want someone following behind you to see where you went. Can yo work out how these patterns were created and recreate them?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

This Sudoku, based on differences. Using the one clue number can you find the solution?

Two sudokus in one. Challenge yourself to make the necessary connections.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

A Sudoku with clues given as sums of entries.

Use the clues about the shaded areas to help solve this sudoku

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

A Sudoku based on clues that give the differences between adjacent cells.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Two sudokus in one. Challenge yourself to make the necessary connections.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

A function pyramid is a structure where each entry in the pyramid is determined by the two entries below it. Can you figure out how the pyramid is generated?

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

In this article, the NRICH team describe the process of selecting solutions for publication on the site.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

The challenge is to find the values of the variables if you are to solve this Sudoku.

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.