Where should runners start the 200m race so that they have all run the same distance by the finish?

Have you ever wondered what it would be like to race against Usain Bolt?

What functions can you make using the function machines RECIPROCAL and PRODUCT and the operator machines DIFF and INT?

Which line graph, equations and physical processes go together?

Here are several equations from real life. Can you work out which measurements are possible from each equation?

Work with numbers big and small to estimate and calculate various quantities in physical contexts.

Andy wants to cycle from Land's End to John o'Groats. Will he be able to eat enough to keep him going?

Work out the numerical values for these physical quantities.

Get further into power series using the fascinating Bessel's equation.

See how enormously large quantities can cancel out to give a good approximation to the factorial function.

Get some practice using big and small numbers in chemistry.

What shapes should Elly cut out to make a witch's hat? How can she make a taller hat?

Looking at small values of functions. Motivating the existence of the Taylor expansion.

Make an accurate diagram of the solar system and explore the concept of a grand conjunction.

This is our collection of tasks on the mathematical theme of 'Population Dynamics' for advanced students and those interested in mathematical modelling.

Are these statistical statements sometimes, always or never true? Or it is impossible to say?

Go on a vector walk and determine which points on the walk are closest to the origin.

Could nanotechnology be used to see if an artery is blocked? Or is this just science fiction?

Many physical constants are only known to a certain accuracy. Explore the numerical error bounds in the mass of water and its constituents.

By exploring the concept of scale invariance, find the probability that a random piece of real data begins with a 1.

Look at the advanced way of viewing sin and cos through their power series.

Match the descriptions of physical processes to these differential equations.

Explore the relationship between resistance and temperature

Work with numbers big and small to estimate and calculate various quantities in biological contexts.

Explore the possibilities for reaction rates versus concentrations with this non-linear differential equation

Build up the concept of the Taylor series

In this short problem, can you deduce the likely location of the odd ones out in six sets of random numbers?

Each week a company produces X units and sells p per cent of its stock. How should the company plan its warehouse space?

Estimate these curious quantities sufficiently accurately that you can rank them in order of size

In which Olympic event does a human travel fastest? Decide which events to include in your Alternative Record Book.

Why MUST these statistical statements probably be at least a little bit wrong?

Formulate and investigate a simple mathematical model for the design of a table mat.

Use trigonometry to determine whether solar eclipses on earth can be perfect.

Analyse these beautiful biological images and attempt to rank them in size order.

Use simple trigonometry to calculate the distance along the flight path from London to Sydney.

To investigate the relationship between the distance the ruler drops and the time taken, we need to do some mathematical modelling...

Explore the meaning of the scalar and vector cross products and see how the two are related.

Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

Work with numbers big and small to estimate and calulate various quantities in biological contexts.

Shows that Pythagoras for Spherical Triangles reduces to Pythagoras's Theorem in the plane when the triangles are small relative to the radius of the sphere.

Find the distance of the shortest air route at an altitude of 6000 metres between London and Cape Town given the latitudes and longitudes. A simple application of scalar products of vectors.

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

Use your skill and knowledge to place various scientific lengths in order of size. Can you judge the length of objects with sizes ranging from 1 Angstrom to 1 million km with no wrong attempts?

How would you go about estimating populations of dolphins?