Golden thoughts

Rectangle PQRS has X and Y on the edges. Triangles PQY, YRX and XSP have equal areas. Prove X and Y divide the sides of PQRS in the golden ratio.

Problem

Consider the following diagram:

Image
Golden Thoughts

Given that the areas of $A1$, $A2$ and $A3$ in the above diagram are equal, show that $${RX\over XS} = {RY\over YQ} = {{\sqrt{5}+ 1}\over 2}$$ so that the points $X$ and $Y$ divide the sides of the rectangle in the golden ratio.