Search by Topic

Resources tagged with Mathematical reasoning & proof similar to Interactive Workout - Further:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 184 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

problem icon

Square Mean

Stage: 4 Challenge Level: Challenge Level:1

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

problem icon

Proof Sorter - Quadratic Equation

Stage: 4 and 5 Challenge Level: Challenge Level:2 Challenge Level:2

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

problem icon

Target Six

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

problem icon

Fractional Calculus III

Stage: 5

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

problem icon

Direct Logic

Stage: 5 Challenge Level: Challenge Level:1

Can you work through these direct proofs, using our interactive proof sorters?

problem icon

Thousand Words

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Here the diagram says it all. Can you find the diagram?

problem icon

Diophantine N-tuples

Stage: 4 Challenge Level: Challenge Level:1

Take any whole number q. Calculate q^2 - 1. Factorize q^2-1 to give two factors a and b (not necessarily q+1 and q-1). Put c = a + b + 2q . Then you will find that ab+1 , bc+1 and ca+1 are all. . . .

problem icon

Power Quady

Stage: 5 Challenge Level: Challenge Level:1

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

problem icon

Problem Solving, Using and Applying and Functional Mathematics

Stage: 1, 2, 3, 4 and 5 Challenge Level: Challenge Level:1

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

problem icon

Quadratic Harmony

Stage: 5 Challenge Level: Challenge Level:1

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

problem icon

Some Circuits in Graph or Network Theory

Stage: 4 and 5

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

problem icon

For What?

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

problem icon

Golden Eggs

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

Find a connection between the shape of a special ellipse and an infinite string of nested square roots.

problem icon

Water Pistols

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

problem icon

Sums of Squares and Sums of Cubes

Stage: 5

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum orf two or more cubes.

problem icon

Mechanical Integration

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

problem icon

Recent Developments on S.P. Numbers

Stage: 5

Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.

problem icon

Sperner's Lemma

Stage: 5

An article about the strategy for playing The Triangle Game which appears on the NRICH site. It contains a simple lemma about labelling a grid of equilateral triangles within a triangular frame.

problem icon

Iffy Logic

Stage: 4 Short Challenge Level: Challenge Level:1

Can you rearrange the cards to make a series of correct mathematical statements?

problem icon

To Prove or Not to Prove

Stage: 4 and 5

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

problem icon

Plus or Minus

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Make and prove a conjecture about the value of the product of the Fibonacci numbers $F_{n+1}F_{n-1}$.

problem icon

Proof Sorter - Geometric Series

Stage: 5 Challenge Level: Challenge Level:1

This is an interactivity in which you have to sort into the correct order the steps in the proof of the formula for the sum of a geometric series.

problem icon

More Number Pyramids

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

problem icon

Logic, Truth Tables and Switching Circuits Challenge

Stage: 3, 4 and 5

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

problem icon

Big, Bigger, Biggest

Stage: 5 Challenge Level: Challenge Level:1

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

problem icon

Impossible Sandwiches

Stage: 3, 4 and 5

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

problem icon

Our Ages

Stage: 4 Challenge Level: Challenge Level:1

I am exactly n times my daughter's age. In m years I shall be exactly (n-1) times her age. In m2 years I shall be exactly (n-2) times her age. After that I shall never again be an exact multiple of. . . .

problem icon

DOTS Division

Stage: 4 Challenge Level: Challenge Level:1

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

problem icon

The Triangle Game

Stage: 3 and 4 Challenge Level: Challenge Level:1

Can you discover whether this is a fair game?

problem icon

Long Short

Stage: 4 Challenge Level: Challenge Level:1

A quadrilateral inscribed in a unit circle has sides of lengths s1, s2, s3 and s4 where s1 ≤ s2 ≤ s3 ≤ s4. Find a quadrilateral of this type for which s1= sqrt2 and show s1 cannot. . . .

problem icon

Binomial

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

problem icon

Pair Squares

Stage: 5 Challenge Level: Challenge Level:1

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

problem icon

More Sums of Squares

Stage: 5

Tom writes about expressing numbers as the sums of three squares.

problem icon

Unit Interval

Stage: 4 and 5 Challenge Level: Challenge Level:1

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

problem icon

Gift of Gems

Stage: 4 Challenge Level: Challenge Level:1

Four jewellers possessing respectively eight rubies, ten saphires, a hundred pearls and five diamonds, presented, each from his own stock, one apiece to the rest in token of regard; and they. . . .

problem icon

Polite Numbers

Stage: 5 Challenge Level: Challenge Level:1

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

problem icon

Stonehenge

Stage: 5 Challenge Level: Challenge Level:1

Explain why, when moving heavy objects on rollers, the object moves twice as fast as the rollers. Try a similar experiment yourself.

problem icon

Integral Inequality

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

An inequality involving integrals of squares of functions.

problem icon

The Great Weights Puzzle

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

problem icon

Proof Sorter - Sum of an AP

Stage: 5 Challenge Level: Challenge Level:1

Use this interactivity to sort out the steps of the proof of the formula for the sum of an arithmetic series. The 'thermometer' will tell you how you are doing

problem icon

Tree Graphs

Stage: 4 Challenge Level: Challenge Level:1

A connected graph is a graph in which we can get from any vertex to any other by travelling along the edges. A tree is a connected graph with no closed circuits (or loops. Prove that every tree. . . .

problem icon

Whole Number Dynamics III

Stage: 4 and 5

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

problem icon

Whole Number Dynamics II

Stage: 4 and 5

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

problem icon

Dodgy Proofs

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

These proofs are wrong. Can you see why?

problem icon

Magic Squares II

Stage: 4 and 5

An article which gives an account of some properties of magic squares.

problem icon

Advent Calendar 2011 - Secondary

Stage: 3, 4 and 5 Challenge Level: Challenge Level:1

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

problem icon

Where Do We Get Our Feet Wet?

Stage: 5

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

problem icon

Diverging

Stage: 5 Challenge Level: Challenge Level:1

Show that for natural numbers x and y if x/y > 1 then x/y>(x+1)/(y+1}>1. Hence prove that the product for i=1 to n of [(2i)/(2i-1)] tends to infinity as n tends to infinity.

problem icon

Euler's Squares

Stage: 4 Challenge Level: Challenge Level:1

Euler found four whole numbers such that the sum of any two of the numbers is a perfect square. Three of the numbers that he found are a = 18530, b=65570, c=45986. Find the fourth number, x. You. . . .

problem icon

Whole Number Dynamics V

Stage: 4 and 5

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.