Three equilateral triangles ABC, AYX and XZB are drawn with the point X a moveable point on AB. The points P, Q and R are the centres of the three triangles. What can you say about triangle PQR?

This is an interactivity in which you have to sort into the correct order the steps in the proof of the formula for the sum of a geometric series.

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Can you work through these direct proofs, using our interactive proof sorters?

A circle has centre O and angle POR = angle QOR. Construct tangents at P and Q meeting at T. Draw a circle with diameter OT. Do P and Q lie inside, or on, or outside this circle?

The circumcentres of four triangles are joined to form a quadrilateral. What do you notice about this quadrilateral as the dynamic image changes? Can you prove your conjecture?

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

Start with any triangle T1 and its inscribed circle. Draw the triangle T2 which has its vertices at the points of contact between the triangle T1 and its incircle. Now keep repeating this. . . .

Four jewellers possessing respectively eight rubies, ten saphires, a hundred pearls and five diamonds, presented, each from his own stock, one apiece to the rest in token of regard; and they. . . .

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

Use this interactivity to sort out the steps of the proof of the formula for the sum of an arithmetic series. The 'thermometer' will tell you how you are doing

Prove Pythagoras' Theorem using enlargements and scale factors.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

Can you make sense of the three methods to work out the area of the kite in the square?

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

By proving these particular identities, prove the existence of general cases.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Here is a proof of Euler's formula in the plane and on a sphere together with projects to explore cases of the formula for a polygon with holes, for the torus and other solids with holes and the. . . .

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

This is the second article on right-angled triangles whose edge lengths are whole numbers.

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

An article which gives an account of some properties of magic squares.

Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.