Search by Topic

Resources tagged with Mathematical reasoning & proof similar to More Beads:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 183 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

problem icon

Recent Developments on S.P. Numbers

Stage: 5

Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.

problem icon

Knight Defeated

Stage: 4 Challenge Level: Challenge Level:1

The knight's move on a chess board is 2 steps in one direction and one step in the other direction. Prove that a knight cannot visit every square on the board once and only (a tour) on a 2 by n board. . . .

problem icon

Russian Cubes

Stage: 4 Challenge Level: Challenge Level:1

I want some cubes painted with three blue faces and three red faces. How many different cubes can be painted like that?

problem icon

Transitivity

Stage: 5

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

problem icon

Magic W Wrap Up

Stage: 5 Challenge Level: Challenge Level:1

Prove that you cannot form a Magic W with a total of 12 or less or with a with a total of 18 or more.

problem icon

Iffy Logic

Stage: 4 and 5 Challenge Level: Challenge Level:1

Can you rearrange the cards to make a series of correct mathematical statements?

problem icon

To Prove or Not to Prove

Stage: 4 and 5

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

problem icon

Direct Logic

Stage: 5 Challenge Level: Challenge Level:1

Can you work through these direct proofs, using our interactive proof sorters?

problem icon

Proof Sorter - Quadratic Equation

Stage: 4 and 5 Challenge Level: Challenge Level:2 Challenge Level:2

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

problem icon

An Introduction to Number Theory

Stage: 5

An introduction to some beautiful results of Number Theory

problem icon

Postage

Stage: 4 Challenge Level: Challenge Level:1

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

problem icon

Water Pistols

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

problem icon

Whole Number Dynamics III

Stage: 4 and 5

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

problem icon

Try to Win

Stage: 5

Solve this famous unsolved problem and win a prize. Take a positive integer N. If even, divide by 2; if odd, multiply by 3 and add 1. Iterate. Prove that the sequence always goes to 4,2,1,4,2,1...

problem icon

Tree Graphs

Stage: 5 Challenge Level: Challenge Level:1

A connected graph is a graph in which we can get from any vertex to any other by travelling along the edges. A tree is a connected graph with no closed circuits (or loops. Prove that every tree has. . . .

problem icon

Impossible Sandwiches

Stage: 3, 4 and 5

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

problem icon

Whole Number Dynamics II

Stage: 4 and 5

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

problem icon

Thousand Words

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Here the diagram says it all. Can you find the diagram?

problem icon

Doodles

Stage: 4 Challenge Level: Challenge Level:1

Draw a 'doodle' - a closed intersecting curve drawn without taking pencil from paper. What can you prove about the intersections?

problem icon

Road Maker

Stage: 4 and 5 Challenge Level: Challenge Level:1

Which of these roads will satisfy a Munchkin builder?

problem icon

Whole Number Dynamics V

Stage: 4 and 5

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

problem icon

Proof: A Brief Historical Survey

Stage: 4 and 5

If you think that mathematical proof is really clearcut and universal then you should read this article.

problem icon

Where Do We Get Our Feet Wet?

Stage: 5

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

problem icon

Picture Story

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

problem icon

Pareq Exists

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

problem icon

Janine's Conjecture

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

problem icon

Polite Numbers

Stage: 5 Challenge Level: Challenge Level:1

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

problem icon

Towering Trapeziums

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you find the areas of the trapezia in this sequence?

problem icon

Cube Net

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

How many tours visit each vertex of a cube once and only once? How many return to the starting point?

problem icon

Whole Number Dynamics IV

Stage: 4 and 5

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

problem icon

Unit Interval

Stage: 4 and 5 Challenge Level: Challenge Level:1

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

problem icon

Dodgy Proofs

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

These proofs are wrong. Can you see why?

problem icon

Sums of Squares and Sums of Cubes

Stage: 5

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

problem icon

Road Maker 2

Stage: 5 Short Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you work out where the blue-and-red brick roads end?

problem icon

Modulus Arithmetic and a Solution to Differences

Stage: 5

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

problem icon

Rational Roots

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

problem icon

Magic Squares II

Stage: 4 and 5

An article which gives an account of some properties of magic squares.

problem icon

More Sums of Squares

Stage: 5

Tom writes about expressing numbers as the sums of three squares.

problem icon

Euclid's Algorithm II

Stage: 5

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

problem icon

Proofs with Pictures

Stage: 5

Some diagrammatic 'proofs' of algebraic identities and inequalities.

problem icon

The Triangle Game

Stage: 3 and 4 Challenge Level: Challenge Level:1

Can you discover whether this is a fair game?

problem icon

Advent Calendar 2011 - Secondary

Stage: 3, 4 and 5 Challenge Level: Challenge Level:1

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

problem icon

Binomial

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

problem icon

Proof Sorter - Geometric Series

Stage: 5 Challenge Level: Challenge Level:1

This is an interactivity in which you have to sort into the correct order the steps in the proof of the formula for the sum of a geometric series.

problem icon

Calculating with Cosines

Stage: 4 and 5 Challenge Level: Challenge Level:2 Challenge Level:2

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

problem icon

Quadratic Harmony

Stage: 5 Challenge Level: Challenge Level:1

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

problem icon

Find the Fake

Stage: 4 Challenge Level: Challenge Level:1

There are 12 identical looking coins, one of which is a fake. The counterfeit coin is of a different weight to the rest. What is the minimum number of weighings needed to locate the fake coin?

problem icon

The Great Weights Puzzle

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

problem icon

Mechanical Integration

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

problem icon

Basic Rhythms

Stage: 5 Challenge Level: Challenge Level:2 Challenge Level:2

Explore a number pattern which has the same symmetries in different bases.