Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.

The knight's move on a chess board is 2 steps in one direction and one step in the other direction. Prove that a knight cannot visit every square on the board once and only (a tour) on a 2 by n board. . . .

I want some cubes painted with three blue faces and three red faces. How many different cubes can be painted like that?

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

Prove that you cannot form a Magic W with a total of 12 or less or with a with a total of 18 or more.

Can you rearrange the cards to make a series of correct mathematical statements?

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

Can you work through these direct proofs, using our interactive proof sorters?

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

With n people anywhere in a field each shoots a water pistol at the nearest person. In general who gets wet? What difference does it make if n is odd or even?

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

Solve this famous unsolved problem and win a prize. Take a positive integer N. If even, divide by 2; if odd, multiply by 3 and add 1. Iterate. Prove that the sequence always goes to 4,2,1,4,2,1...

A connected graph is a graph in which we can get from any vertex to any other by travelling along the edges. A tree is a connected graph with no closed circuits (or loops. Prove that every tree has. . . .

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

Draw a 'doodle' - a closed intersecting curve drawn without taking pencil from paper. What can you prove about the intersections?

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

If you think that mathematical proof is really clearcut and universal then you should read this article.

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

Can you find the areas of the trapezia in this sequence?

How many tours visit each vertex of a cube once and only once? How many return to the starting point?

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

Can you work out where the blue-and-red brick roads end?

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

An article which gives an account of some properties of magic squares.

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

This is an interactivity in which you have to sort into the correct order the steps in the proof of the formula for the sum of a geometric series.

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

There are 12 identical looking coins, one of which is a fake. The counterfeit coin is of a different weight to the rest. What is the minimum number of weighings needed to locate the fake coin?

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

Explore a number pattern which has the same symmetries in different bases.