Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

A connected graph is a graph in which we can get from any vertex to any other by travelling along the edges. A tree is a connected graph with no closed circuits (or loops. Prove that every tree has. . . .

An article about the strategy for playing The Triangle Game which appears on the NRICH site. It contains a simple lemma about labelling a grid of equilateral triangles within a triangular frame.

Take a number, add its digits then multiply the digits together, then multiply these two results. If you get the same number it is an SP number.

This problem is a sequence of linked mini-challenges leading up to the proof of a difficult final challenge, encouraging you to think mathematically. Starting with one of the mini-challenges, how. . . .

This is the second of two articles and discusses problems relating to the curvature of space, shortest distances on surfaces, triangulations of surfaces and representation by graphs.

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

Here is a proof of Euler's formula in the plane and on a sphere together with projects to explore cases of the formula for a polygon with holes, for the torus and other solids with holes and the. . . .

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

An inequality involving integrals of squares of functions.

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

An article which gives an account of some properties of magic squares.

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Solve this famous unsolved problem and win a prize. Take a positive integer N. If even, divide by 2; if odd, multiply by 3 and add 1. Iterate. Prove that the sequence always goes to 4,2,1,4,2,1...

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Suppose A always beats B and B always beats C, then would you expect A to beat C? Not always! What seems obvious is not always true. Results always need to be proved in mathematics.

By considering powers of (1+x), show that the sum of the squares of the binomial coefficients from 0 to n is 2nCn

This is the second article on right-angled triangles whose edge lengths are whole numbers.

There are 12 identical looking coins, one of which is a fake. The counterfeit coin is of a different weight to the rest. What is the minimum number of weighings needed to locate the fake coin?

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

Explore a number pattern which has the same symmetries in different bases.

Can you work through these direct proofs, using our interactive proof sorters?

Prove that you cannot form a Magic W with a total of 12 or less or with a with a total of 18 or more.

The knight's move on a chess board is 2 steps in one direction and one step in the other direction. Prove that a knight cannot visit every square on the board once and only (a tour) on a 2 by n board. . . .

Prove that in every tetrahedron there is a vertex such that the three edges meeting there have lengths which could be the sides of a triangle.

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

Can you work out where the blue-and-red brick roads end?

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

Four identical right angled triangles are drawn on the sides of a square. Two face out, two face in. Why do the four vertices marked with dots lie on one line?

Sort these mathematical propositions into a series of 8 correct statements.