For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

Delight your friends with this cunning trick! Can you explain how it works?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Choose any three by three square of dates on a calendar page...

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Find at least one way to put in some operation signs (+ - x ÷) to make these digits come to 100.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

You have 5 darts and your target score is 44. How many different ways could you score 44?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Here is a chance to play a version of the classic Countdown Game.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

This article explains how to make your own magic square to mark a special occasion with the special date of your choice on the top line.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

This task follows on from Build it Up and takes the ideas into three dimensions!

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Can you find all the ways to get 15 at the top of this triangle of numbers?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.