Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

If you have only four weights, where could you place them in order to balance this equaliser?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

In this game, you can add, subtract, multiply or divide the numbers on the dice. Which will you do so that you get to the end of the number line first?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Here is a chance to play a version of the classic Countdown Game.

This Sudoku, based on differences. Using the one clue number can you find the solution?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This challenge extends the Plants investigation so now four or more children are involved.

Can you use the information to find out which cards I have used?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?