What is the largest number you can make using the three digits 2, 3 and 4 in any way you like, using any operations you like? You can only use each digit once.

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

When I type a sequence of letters my calculator gives the product of all the numbers in the corresponding memories. What numbers should I store so that when I type 'ONE' it returns 1, and when I type. . . .

What is the sum of all the digits in all the integers from one to one million?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

A combination mechanism for a safe comprises thirty-two tumblers numbered from one to thirty-two in such a way that the numbers in each wheel total 132... Could you open the safe?

Use your logical reasoning to work out how many cows and how many sheep there are in each field.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Got It game for an adult and child. How can you play so that you know you will always win?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Ben’s class were making cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Whenever two chameleons of different colours meet they change colour to the third colour. Describe the shortest sequence of meetings in which all the chameleons change to green if you start with 12. . . .

Can you arrange the digits 1,2,3,4,5,6,7,8,9 into three 3-digit numbers such that their total is close to 1500?

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Investigate $1^n + 19^n + 20^n + 51^n + 57^n + 80^n + 82^n $ and $2^n + 12^n + 31^n + 40^n + 69^n + 71^n + 85^n$ for different values of n.

This challenge is to make up YOUR OWN alphanumeric. Each letter represents a digit and where the same letter appears more than once it must represent the same digit each time.

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

If you have only four weights, where could you place them in order to balance this equaliser?

This Sudoku, based on differences. Using the one clue number can you find the solution?

Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

A game for 2 or more players with a pack of cards. Practise your skills of addition, subtraction, multiplication and division to hit the target score.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

In this game, you can add, subtract, multiply or divide the numbers on the dice. Which will you do so that you get to the end of the number line first?

Amy has a box containing domino pieces but she does not think it is a complete set. She has 24 dominoes in her box and there are 125 spots on them altogether. Which of her domino pieces are missing?

Rocco ran in a 200 m race for his class. Use the information to find out how many runners there were in the race and what Rocco's finishing position was.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Fill in the numbers to make the sum of each row, column and diagonal equal to 34. For an extra challenge try the huge American Flag magic square.

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

There are three buckets each of which holds a maximum of 5 litres. Use the clues to work out how much liquid there is in each bucket.

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

Mr. Sunshine tells the children they will have 2 hours of homework. After several calculations, Harry says he hasn't got time to do this homework. Can you see where his reasoning is wrong?

Annie cut this numbered cake into 3 pieces with 3 cuts so that the numbers on each piece added to the same total. Where were the cuts and what fraction of the whole cake was each piece?

Can you design a new shape for the twenty-eight squares and arrange the numbers in a logical way? What patterns do you notice?

Can you make square numbers by adding two prime numbers together?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Use 4 four times with simple operations so that you get the answer 12. Can you make 15, 16 and 17 too?

Crosses can be drawn on number grids of various sizes. What do you notice when you add opposite ends?

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

Mrs Morgan, the class's teacher, pinned numbers onto the backs of three children. Use the information to find out what the three numbers were.