In this game, you can add, subtract, multiply or divide the numbers on the dice. Which will you do so that you get to the end of the number line first?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Got It game for an adult and child. How can you play so that you know you will always win?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

This dice train has been made using specific rules. How many different trains can you make?

A game for 2 or more players with a pack of cards. Practise your skills of addition, subtraction, multiplication and division to hit the target score.

Using some or all of the operations of addition, subtraction, multiplication and division and using the digits 3, 3, 8 and 8 each once and only once make an expression equal to 24.

Here is a chance to play a version of the classic Countdown Game.

Have a go at this game which involves throwing two dice and adding their totals. Where should you place your counters to be more likely to win?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

If you have only four weights, where could you place them in order to balance this equaliser?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Fill in the numbers to make the sum of each row, column and diagonal equal to 34. For an extra challenge try the huge American Flag magic square.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Can you arrange the digits 1,2,3,4,5,6,7,8,9 into three 3-digit numbers such that their total is close to 1500?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

You have 5 darts and your target score is 44. How many different ways could you score 44?

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

A game for 2 players. Practises subtraction or other maths operations knowledge.

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?