During the third hour after midnight the hands on a clock point in the same direction (so one hand is over the top of the other). At what time, to the nearest second, does this happen?

This article for teachers suggests ideas for activities built around 10 and 2010.

Which times on a digital clock have a line of symmetry? Which look the same upside-down? You might like to try this investigation and find out!

If you have only four weights, where could you place them in order to balance this equaliser?

Investigate the different distances of these car journeys and find out how long they take.

A lady has a steel rod and a wooden pole and she knows the length of each. How can she measure out an 8 unit piece of pole?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Mr. Sunshine tells the children they will have 2 hours of homework. After several calculations, Harry says he hasn't got time to do this homework. Can you see where his reasoning is wrong?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

On the table there is a pile of oranges and lemons that weighs exactly one kilogram. Using the information, can you work out how many lemons there are?

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Bernard Bagnall recommends some primary school problems which use numbers from the environment around us, from clocks to house numbers.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Using 3 rods of integer lengths, none longer than 10 units and not using any rod more than once, you can measure all the lengths in whole units from 1 to 10 units. How many ways can you do this?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

These two group activities use mathematical reasoning - one is numerical, one geometric.

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Can you make square numbers by adding two prime numbers together?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.