Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Delight your friends with this cunning trick! Can you explain how it works?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

If you have only four weights, where could you place them in order to balance this equaliser?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Here is a chance to play a version of the classic Countdown Game.

There are nasty versions of this dice game but we'll start with the nice ones...

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Some Games That May Be Nice or Nasty for an adult and child. Use your knowledge of place value to beat your oponent.

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

This article suggests some ways of making sense of calculations involving positive and negative numbers.

Find the values of the nine letters in the sum: FOOT + BALL = GAME

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?