Here is a chance to play a fractions version of the classic Countdown Game.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Find out about Magic Squares in this article written for students. Why are they magic?!

Different combinations of the weights available allow you to make different totals. Which totals can you make?

This challenge extends the Plants investigation so now four or more children are involved.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Here is a chance to play a version of the classic Countdown Game.

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

If you have only four weights, where could you place them in order to balance this equaliser?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Delight your friends with this cunning trick! Can you explain how it works?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you explain the strategy for winning this game with any target?

This Sudoku, based on differences. Using the one clue number can you find the solution?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Can you find all the ways to get 15 at the top of this triangle of numbers?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.