Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

A pair of Sudoku puzzles that together lead to a complete solution.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

This Sudoku, based on differences. Using the one clue number can you find the solution?

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

Use the differences to find the solution to this Sudoku.

Four small numbers give the clue to the contents of the four surrounding cells.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

You need to find the values of the stars before you can apply normal Sudoku rules.

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Given the products of adjacent cells, can you complete this Sudoku?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Use the clues about the shaded areas to help solve this sudoku

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?