Use the differences to find the solution to this Sudoku.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

A pair of Sudoku puzzles that together lead to a complete solution.

This Sudoku, based on differences. Using the one clue number can you find the solution?

Four small numbers give the clue to the contents of the four surrounding cells.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

The clues for this Sudoku are the product of the numbers in adjacent squares.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

You need to find the values of the stars before you can apply normal Sudoku rules.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

A Sudoku that uses transformations as supporting clues.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Two sudokus in one. Challenge yourself to make the necessary connections.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Use the clues about the shaded areas to help solve this sudoku

In this article, the NRICH team describe the process of selecting solutions for publication on the site.

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Two sudokus in one. Challenge yourself to make the necessary connections.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

This Sudoku requires you to do some working backwards before working forwards.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

A Sudoku based on clues that give the differences between adjacent cells.

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?