Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

Use the clues about the shaded areas to help solve this sudoku

This Sudoku, based on differences. Using the one clue number can you find the solution?

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

You need to find the values of the stars before you can apply normal Sudoku rules.

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

A Sudoku based on clues that give the differences between adjacent cells.

A pair of Sudoku puzzles that together lead to a complete solution.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Two sudokus in one. Challenge yourself to make the necessary connections.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

The clues for this Sudoku are the product of the numbers in adjacent squares.

A Sudoku that uses transformations as supporting clues.

Remember that you want someone following behind you to see where you went. Can yo work out how these patterns were created and recreate them?

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

A Sudoku with clues given as sums of entries.

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Two sudokus in one. Challenge yourself to make the necessary connections.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

Solve the equations to identify the clue numbers in this Sudoku problem.

Four small numbers give the clue to the contents of the four surrounding cells.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.