The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

Given the products of diagonally opposite cells - can you complete this Sudoku?

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

A Sudoku based on clues that give the differences between adjacent cells.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

This Sudoku, based on differences. Using the one clue number can you find the solution?

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Four small numbers give the clue to the contents of the four surrounding cells.

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Two sudokus in one. Challenge yourself to make the necessary connections.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

A Sudoku that uses transformations as supporting clues.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

A Sudoku with clues given as sums of entries.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Given the products of adjacent cells, can you complete this Sudoku?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

A pair of Sudoku puzzles that together lead to a complete solution.

You need to find the values of the stars before you can apply normal Sudoku rules.

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Two sudokus in one. Challenge yourself to make the necessary connections.

The challenge is to find the values of the variables if you are to solve this Sudoku.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Use the clues about the shaded areas to help solve this sudoku

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Solve the equations to identify the clue numbers in this Sudoku problem.

Use the differences to find the solution to this Sudoku.

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.