A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

A pair of Sudoku puzzles that together lead to a complete solution.

Time for a little mathemagic! Choose any five cards from a pack and show four of them to your partner. How can they work out the fifth?

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

Four small numbers give the clue to the contents of the four surrounding cells.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

You need to find the values of the stars before you can apply normal Sudoku rules.

A Sudoku that uses transformations as supporting clues.

The clues for this Sudoku are the product of the numbers in adjacent squares.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Given the products of adjacent cells, can you complete this Sudoku?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Use the clues about the shaded areas to help solve this sudoku

Two sudokus in one. Challenge yourself to make the necessary connections.

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

In this article, the NRICH team describe the process of selecting solutions for publication on the site.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Find out about Magic Squares in this article written for students. Why are they magic?!

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Remember that you want someone following behind you to see where you went. Can yo work out how these patterns were created and recreate them?

Two sudokus in one. Challenge yourself to make the necessary connections.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.