An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Find out about Magic Squares in this article written for students. Why are they magic?!

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

The challenge is to find the values of the variables if you are to solve this Sudoku.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

How many different symmetrical shapes can you make by shading triangles or squares?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

The clues for this Sudoku are the product of the numbers in adjacent squares.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Four small numbers give the clue to the contents of the four surrounding cells.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Given the products of adjacent cells, can you complete this Sudoku?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

You need to find the values of the stars before you can apply normal Sudoku rules.

A pair of Sudoku puzzles that together lead to a complete solution.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

This challenge extends the Plants investigation so now four or more children are involved.

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

Two sudokus in one. Challenge yourself to make the necessary connections.

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?