This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

Given the products of adjacent cells, can you complete this Sudoku?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Given the products of diagonally opposite cells - can you complete this Sudoku?

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

How many different symmetrical shapes can you make by shading triangles or squares?

Use the differences to find the solution to this Sudoku.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Time for a little mathemagic! Choose any five cards from a pack and show four of them to your partner. How can they work out the fifth?

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Two sudokus in one. Challenge yourself to make the necessary connections.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

How have "Warmsnug" arrived at the prices shown on their windows? Which window has been given an incorrect price?

A pair of Sudoku puzzles that together lead to a complete solution.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

Use the clues about the shaded areas to help solve this sudoku

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

A Sudoku with clues given as sums of entries.

Four small numbers give the clue to the contents of the four surrounding cells.