A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

The clues for this Sudoku are the product of the numbers in adjacent squares.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Given the products of adjacent cells, can you complete this Sudoku?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

Use the differences to find the solution to this Sudoku.

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

Two sudokus in one. Challenge yourself to make the necessary connections.

Use the clues about the shaded areas to help solve this sudoku

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

You need to find the values of the stars before you can apply normal Sudoku rules.

A pair of Sudoku puzzles that together lead to a complete solution.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Two sudokus in one. Challenge yourself to make the necessary connections.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

This Sudoku, based on differences. Using the one clue number can you find the solution?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

Four small numbers give the clue to the contents of the four surrounding cells.

A Sudoku that uses transformations as supporting clues.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?