This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Find out about Magic Squares in this article written for students. Why are they magic?!

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

Two sudokus in one. Challenge yourself to make the necessary connections.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

A Sudoku that uses transformations as supporting clues.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Given the products of diagonally opposite cells - can you complete this Sudoku?

A Sudoku based on clues that give the differences between adjacent cells.

A Sudoku with clues given as sums of entries.

Two sudokus in one. Challenge yourself to make the necessary connections.

Four small numbers give the clue to the contents of the four surrounding cells.

Use the differences to find the solution to this Sudoku.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

You need to find the values of the stars before you can apply normal Sudoku rules.

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

A pair of Sudoku puzzles that together lead to a complete solution.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Use the clues about the shaded areas to help solve this sudoku

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

How many different symmetrical shapes can you make by shading triangles or squares?

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?