A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

A Sudoku that uses transformations as supporting clues.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

A Sudoku based on clues that give the differences between adjacent cells.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Two sudokus in one. Challenge yourself to make the necessary connections.

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Two sudokus in one. Challenge yourself to make the necessary connections.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

A pair of Sudoku puzzles that together lead to a complete solution.

You need to find the values of the stars before you can apply normal Sudoku rules.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.

Four small numbers give the clue to the contents of the four surrounding cells.

Use the clues about the shaded areas to help solve this sudoku

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Solve the equations to identify the clue numbers in this Sudoku problem.

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

Remember that you want someone following behind you to see where you went. Can yo work out how these patterns were created and recreate them?

Given the products of adjacent cells, can you complete this Sudoku?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Use the differences to find the solution to this Sudoku.