You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Solve the equations to identify the clue numbers in this Sudoku problem.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

You need to find the values of the stars before you can apply normal Sudoku rules.

The challenge is to find the values of the variables if you are to solve this Sudoku.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Find out about Magic Squares in this article written for students. Why are they magic?!

Two sudokus in one. Challenge yourself to make the necessary connections.

This Sudoku, based on differences. Using the one clue number can you find the solution?

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Remember that you want someone following behind you to see where you went. Can yo work out how these patterns were created and recreate them?

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

A pair of Sudoku puzzles that together lead to a complete solution.

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

A Sudoku that uses transformations as supporting clues.

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Four small numbers give the clue to the contents of the four surrounding cells.

Use the differences to find the solution to this Sudoku.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

A Sudoku with clues given as sums of entries.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one