How have "Warmsnug" arrived at the prices shown on their windows? Which window has been given an incorrect price?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Use the differences to find the solution to this Sudoku.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Four small numbers give the clue to the contents of the four surrounding cells.

A pair of Sudoku puzzles that together lead to a complete solution.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Given the products of adjacent cells, can you complete this Sudoku?

A challenging activity focusing on finding all possible ways of stacking rods.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

You need to find the values of the stars before you can apply normal Sudoku rules.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Two sudokus in one. Challenge yourself to make the necessary connections.

Each clue number in this sudoku is the product of the two numbers in adjacent cells.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Use the clues about the shaded areas to help solve this sudoku

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

This challenge extends the Plants investigation so now four or more children are involved.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

How many different symmetrical shapes can you make by shading triangles or squares?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

A package contains a set of resources designed to develop students’ mathematical thinking. This package places a particular emphasis on “being systematic” and is designed to meet. . . .

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This package contains a collection of problems from the NRICH website that could be suitable for students who have a good understanding of Factors and Multiples and who feel ready to take on some. . . .