Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Two sudokus in one. Challenge yourself to make the necessary connections.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

Two sudokus in one. Challenge yourself to make the necessary connections.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

A Sudoku that uses transformations as supporting clues.

A Sudoku based on clues that give the differences between adjacent cells.

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

A Sudoku with clues given as sums of entries.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

Given the products of diagonally opposite cells - can you complete this Sudoku?

You need to find the values of the stars before you can apply normal Sudoku rules.

A pair of Sudoku puzzles that together lead to a complete solution.

Four small numbers give the clue to the contents of the four surrounding cells.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

This Sudoku, based on differences. Using the one clue number can you find the solution?

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Arrange the digits 1, 1, 2, 2, 3 and 3 so that between the two 1's there is one digit, between the two 2's there are two digits, and between the two 3's there are three digits.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

Solve the equations to identify the clue numbers in this Sudoku problem.

This challenge extends the Plants investigation so now four or more children are involved.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Use the clues about the shaded areas to help solve this sudoku

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?