Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

An activity making various patterns with 2 x 1 rectangular tiles.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

How many models can you find which obey these rules?

These practical challenges are all about making a 'tray' and covering it with paper.

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

This activity investigates how you might make squares and pentominoes from Polydron.

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

Have you noticed that triangles are used in manmade structures? Perhaps there is a good reason for this? 'Test a Triangle' and see how rigid triangles are.

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Surprise your friends with this magic square trick.

Ideas for practical ways of representing data such as Venn and Carroll diagrams.

Make a mobius band and investigate its properties.

Here is a version of the game 'Happy Families' for you to make and play.

Here are some ideas to try in the classroom for using counters to investigate number patterns.

Follow these instructions to make a three-piece and/or seven-piece tangram.

Follow these instructions to make a five-pointed snowflake from a square of paper.

Did you know mazes tell stories? Find out more about mazes and make one of your own.

How can you make a curve from straight strips of paper?

Have a go at drawing these stars which use six points drawn around a circle. Perhaps you can create your own designs?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you make the birds from the egg tangram?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

In this article for teachers, Bernard uses some problems to suggest that once a numerical pattern has been spotted from a practical starting point, going back to the practical can help explain. . . .

It's hard to make a snowflake with six perfect lines of symmetry, but it's fun to try!

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.