Make some celtic knot patterns using tiling techniques

Design and construct a prototype intercooler which will satisfy agreed quality control constraints.

This package contains hands-on code breaking activities based on the Enigma Schools Project. Suitable for Stages 2, 3 and 4.

Exploring balance and centres of mass can be great fun. The resulting structures can seem impossible. Here are some images to encourage you to experiment with non-breakable objects of your own.

These models have appeared around the Centre for Mathematical Sciences. Perhaps you would like to try to make some similar models of your own.

As part of Liverpool08 European Capital of Culture there were a huge number of events and displays. One of the art installations was called "Turning the Place Over". Can you find our how it works?

Did you know mazes tell stories? Find out more about mazes and make one of your own.

You could use just coloured pencils and paper to create this design, but it will be more eye-catching if you can get hold of hammer, nails and string.

It might seem impossible but it is possible. How can you cut a playing card to make a hole big enough to walk through?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

This article for pupils gives an introduction to Celtic knotwork patterns and a feel for how you can draw them.

The challenge for you is to make a string of six (or more!) graded cubes.

This article for students gives some instructions about how to make some different braids.

Build a scaffold out of drinking-straws to support a cup of water

Can Jo make a gym bag for her trainers from the piece of fabric she has?

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

Can you make the birds from the egg tangram?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Logo helps us to understand gradients of lines and why Muggles Magic is not magic but mathematics. See the problem Muggles magic.

Ideas for practical ways of representing data such as Venn and Carroll diagrams.

An activity making various patterns with 2 x 1 rectangular tiles.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Have a go at drawing these stars which use six points drawn around a circle. Perhaps you can create your own designs?

Here's a simple way to make a Tangram without any measuring or ruling lines.

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

The triangle ABC is equilateral. The arc AB has centre C, the arc BC has centre A and the arc CA has centre B. Explain how and why this shape can roll along between two parallel tracks.

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

I start with a red, a green and a blue marble. I can trade any of my marbles for two others, one of each colour. Can I end up with five more blue marbles than red after a number of such trades?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Can you recreate this Indian screen pattern? Can you make up similar patterns of your own?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Make a cube out of straws and have a go at this practical challenge.

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Kaia is sure that her father has worn a particular tie twice a week in at least five of the last ten weeks, but her father disagrees. Who do you think is right?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

If you'd like to know more about Primary Maths Masterclasses, this is the package to read! Find out about current groups in your region or how to set up your own.

A description of how to make the five Platonic solids out of paper.

Follow the diagrams to make this patchwork piece, based on an octagon in a square.

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?