Can you cut a regular hexagon into two pieces to make a parallelogram? Try cutting it into three pieces to make a rhombus!

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the chairs?

Can you cut up a square in the way shown and make the pieces into a triangle?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this plaque design?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Reasoning about the number of matches needed to build squares that share their sides.

Can you fit the tangram pieces into the outlines of these clocks?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Can you fit the tangram pieces into the outline of Granma T?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Make a cube out of straws and have a go at this practical challenge.

Exploring and predicting folding, cutting and punching holes and making spirals.

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Can you fit the tangram pieces into the outline of the child walking home from school?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of this junk?

The challenge for you is to make a string of six (or more!) graded cubes.

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?