Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

Using your knowledge of the properties of numbers, can you fill all the squares on the board?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

In this article for teachers, Bernard uses some problems to suggest that once a numerical pattern has been spotted from a practical starting point, going back to the practical can help explain. . . .

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How can you make an angle of 60 degrees by folding a sheet of paper twice?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

An activity making various patterns with 2 x 1 rectangular tiles.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

How many models can you find which obey these rules?

The triangle ABC is equilateral. The arc AB has centre C, the arc BC has centre A and the arc CA has centre B. Explain how and why this shape can roll along between two parallel tracks.

A game in which players take it in turns to choose a number. Can you block your opponent?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Delight your friends with this cunning trick! Can you explain how it works?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

These practical challenges are all about making a 'tray' and covering it with paper.

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you make the birds from the egg tangram?

Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

Ideas for practical ways of representing data such as Venn and Carroll diagrams.

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Have a go at drawing these stars which use six points drawn around a circle. Perhaps you can create your own designs?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

If you'd like to know more about Primary Maths Masterclasses, this is the package to read! Find out about current groups in your region or how to set up your own.

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Follow the diagrams to make this patchwork piece, based on an octagon in a square.

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Can you fit the tangram pieces into the outline of this junk?

Kaia is sure that her father has worn a particular tie twice a week in at least five of the last ten weeks, but her father disagrees. Who do you think is right?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?