What do these two triangles have in common? How are they related?

Can you recreate this Indian screen pattern? Can you make up similar patterns of your own?

It's hard to make a snowflake with six perfect lines of symmetry, but it's fun to try!

Follow these instructions to make a five-pointed snowflake from a square of paper.

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

These practical challenges are all about making a 'tray' and covering it with paper.

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

Galileo, a famous inventor who lived about 400 years ago, came up with an idea similar to this for making a time measuring instrument. Can you turn your pendulum into an accurate minute timer?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Have a go at drawing these stars which use six points drawn around a circle. Perhaps you can create your own designs?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Kaia is sure that her father has worn a particular tie twice a week in at least five of the last ten weeks, but her father disagrees. Who do you think is right?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Follow the diagrams to make this patchwork piece, based on an octagon in a square.

If you'd like to know more about Primary Maths Masterclasses, this is the package to read! Find out about current groups in your region or how to set up your own.

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Here's a simple way to make a Tangram without any measuring or ruling lines.

This is a simple paper-folding activity that gives an intriguing result which you can then investigate further.

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

How can you make a curve from straight strips of paper?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

Watch the video to see how to fold a square of paper to create a flower. What fraction of the piece of paper is the small triangle?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.