What do these two triangles have in common? How are they related?

Follow these instructions to make a five-pointed snowflake from a square of paper.

Galileo, a famous inventor who lived about 400 years ago, came up with an idea similar to this for making a time measuring instrument. Can you turn your pendulum into an accurate minute timer?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

It's hard to make a snowflake with six perfect lines of symmetry, but it's fun to try!

Can you recreate this Indian screen pattern? Can you make up similar patterns of your own?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

These practical challenges are all about making a 'tray' and covering it with paper.

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

Kaia is sure that her father has worn a particular tie twice a week in at least five of the last ten weeks, but her father disagrees. Who do you think is right?

If you'd like to know more about Primary Maths Masterclasses, this is the package to read! Find out about current groups in your region or how to set up your own.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Have a go at drawing these stars which use six points drawn around a circle. Perhaps you can create your own designs?

Can you fit the tangram pieces into the outline of this junk?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Can you fit the tangram pieces into the outline of this telephone?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Follow the diagrams to make this patchwork piece, based on an octagon in a square.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

The triangle ABC is equilateral. The arc AB has centre C, the arc BC has centre A and the arc CA has centre B. Explain how and why this shape can roll along between two parallel tracks.

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Can you visualise what shape this piece of paper will make when it is folded?

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

How can you make a curve from straight strips of paper?

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

How many models can you find which obey these rules?