You may also like

problem icon


For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

problem icon

Is There a Theorem?

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

problem icon

Card Trick 2

Can you explain how this card trick works?

Pick's Theorem

Stage: 3 Challenge Level: Challenge Level:1

When the dots on square dotty paper are joined by straight lines the enclosed figures have dots on their perimeter ($p$) and often internal ($i$) ones as well.

Figures can be described in this way: $(p, i)$.
For example, the red square has a $(p,i)$ of $(4,0)$, the grey triangle $(3,1)$, the green triangle $(5,0)$ and the blue hexagon $(6,4)$:


Each figure you produce will always enclose an area ($A$) of the square dotty paper.

The examples in the diagram have areas of $1$, $1 {1 \over 2}$, and $6$ sq units.

Check that you agree.

Draw more figures and keep a record of their perimeter points ($p$), interior points ($i$) and areas ($A$).

Can you find a relationship between these three variables?

Click here for a poster of this problem.