Pythagorean Golden Means

Show that the arithmetic mean, geometric mean and harmonic mean of a and b can be the lengths of the sides of a right-angles triangle if and only if a = bx^3, where x is the Golden Ratio.
Exploring and noticing Working systematically Conjecturing and generalising Visualising and representing Reasoning, convincing and proving
Being curious Being resourceful Being resilient Being collaborative

Problem

This question involves the sides of a right-angled triangle, the Golden Ratio, and the arithmetic, geometric and harmonic means of two numbers. Take any two numbers $a$ and $b$, where $ 0 < b < a $.

The arithmetic mean (AM) is $ (a+b)/2 $;

the geometric mean (GM) is $ \sqrt{ab} $;

the harmonic mean (HM) is $$ {1 \over {{1 \over 2}\left( {1 \over a} + {1\over b } \right)}}; $$

and the arithmetic mean is always the largest.

Show that the AM, GM and HM of $a$ and $b$ can be the lengths of the sides of a right-angled triangle if and only if $$ a = b\varphi^3, $$ where $ \varphi = {1\over 2}(1+\sqrt{5}) $, the Golden Ratio.