Search by Topic

Resources tagged with Generalising similar to Matching Fractions:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 137 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Generalising

problem icon

All Tangled Up

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you tangle yourself up and reach any fraction?

problem icon

Keep it Simple

Stage: 3 Challenge Level: Challenge Level:1

Can all unit fractions be written as the sum of two unit fractions?

problem icon

Egyptian Fractions

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

problem icon

More Twisting and Turning

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

It would be nice to have a strategy for disentangling any tangled ropes...

problem icon

Lower Bound

Stage: 3 Challenge Level: Challenge Level:1

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

problem icon

Sum Equals Product

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

problem icon

Harmonic Triangle

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you see how to build a harmonic triangle? Can you work out the next two rows?

problem icon

Special Sums and Products

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

problem icon

Snake Coils

Stage: 2 Challenge Level: Challenge Level:1

This challenge asks you to imagine a snake coiling on itself.

problem icon

Nim-like Games

Stage: 2, 3 and 4 Challenge Level: Challenge Level:1

A collection of games on the NIM theme

problem icon

Nim-interactive

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

problem icon

Got It

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

problem icon

Tilted Squares

Stage: 3 Challenge Level: Challenge Level:1

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

problem icon

Arithmagons

Stage: 3 Challenge Level: Challenge Level:1

Can you find the values at the vertices when you know the values on the edges?

problem icon

Crossings

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

problem icon

Number Differences

Stage: 2 Challenge Level: Challenge Level:1

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

problem icon

Seven Squares - Group-worthy Task

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

problem icon

Number Pyramids

Stage: 3 Challenge Level: Challenge Level:1

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

problem icon

Odd Squares

Stage: 2 Challenge Level: Challenge Level:1

Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?

problem icon

Up and Down Staircases

Stage: 2 Challenge Level: Challenge Level:1

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

problem icon

Picturing Square Numbers

Stage: 3 Challenge Level: Challenge Level:1

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

problem icon

Picturing Triangle Numbers

Stage: 3 Challenge Level: Challenge Level:1

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

problem icon

Games Related to Nim

Stage: 1, 2, 3 and 4

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

problem icon

Cuisenaire Rods

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

problem icon

Painted Cube

Stage: 3 Challenge Level: Challenge Level:1

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

problem icon

Winning Lines

Stage: 2, 3 and 4 Challenge Level: Challenge Level:1

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

problem icon

Domino Numbers

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

problem icon

Tourism

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

problem icon

Go Forth and Generalise

Stage: 3

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

problem icon

Frogs

Stage: 3 Challenge Level: Challenge Level:1

How many moves does it take to swap over some red and blue frogs? Do you have a method?

problem icon

Konigsberg Plus

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

problem icon

Multiplication Square

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

problem icon

What Numbers Can We Make?

Stage: 3 Challenge Level: Challenge Level:1

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

problem icon

Magic Letters

Stage: 3 Challenge Level: Challenge Level:1

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

problem icon

Button-up Some More

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

problem icon

Christmas Chocolates

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

problem icon

Handshakes

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

problem icon

Steps to the Podium

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

It starts quite simple but great opportunities for number discoveries and patterns!

problem icon

Play to 37

Stage: 2 Challenge Level: Challenge Level:1

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

problem icon

Nim-7 for Two

Stage: 1 and 2 Challenge Level: Challenge Level:1

Nim-7 game for an adult and child. Who will be the one to take the last counter?

problem icon

Strike it Out for Two

Stage: 1 and 2 Challenge Level: Challenge Level:1

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

problem icon

Got it for Two

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

Got It game for an adult and child. How can you play so that you know you will always win?

problem icon

Sums and Differences 2

Stage: 2 Challenge Level: Challenge Level:1

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

problem icon

Sums and Differences 1

Stage: 2 Challenge Level: Challenge Level:1

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

problem icon

Mystic Rose

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

problem icon

How Much Can We Spend?

Stage: 3 Challenge Level: Challenge Level:1

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

problem icon

For Richer for Poorer

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Charlie has moved between countries and the average income of both has increased. How can this be so?

problem icon

Masterclass Ideas: Generalising

Stage: 2 and 3 Challenge Level: Challenge Level:1

A package contains a set of resources designed to develop pupils’ mathematical thinking. This package places a particular emphasis on “generalising” and is designed to meet the. . . .

problem icon

Partitioning Revisited

Stage: 3 Challenge Level: Challenge Level:1

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

problem icon

Triangle Pin-down

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.