Got It game for an adult and child. How can you play so that you know you will always win?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Can you explain the strategy for winning this game with any target?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Can you find all the ways to get 15 at the top of this triangle of numbers?

This task follows on from Build it Up and takes the ideas into three dimensions!

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

Are these statements always true, sometimes true or never true?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

This activity involves rounding four-digit numbers to the nearest thousand.

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

An investigation that gives you the opportunity to make and justify predictions.

Find out what a "fault-free" rectangle is and try to make some of your own.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?