Got It game for an adult and child. How can you play so that you know you will always win?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

Can you explain the strategy for winning this game with any target?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you find all the ways to get 15 at the top of this triangle of numbers?

Are these statements always true, sometimes true or never true?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

This task follows on from Build it Up and takes the ideas into three dimensions!

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

A game for 2 players. Set out 16 counters in rows of 1,3,5 and 7. Players take turns to remove any number of counters from a row. The player left with the last counter looses.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Here are two kinds of spirals for you to explore. What do you notice?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

A game for 2 players with similaritlies to NIM. Place one counter on each spot on the games board. Players take it is turns to remove 1 or 2 adjacent counters. The winner picks up the last counter.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

This activity involves rounding four-digit numbers to the nearest thousand.

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.