How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Delight your friends with this cunning trick! Can you explain how it works?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Here are two kinds of spirals for you to explore. What do you notice?

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

This activity involves rounding four-digit numbers to the nearest thousand.

Can you describe this route to infinity? Where will the arrows take you next?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

The diagram shows a 5 by 5 geoboard with 25 pins set out in a square array. Squares are made by stretching rubber bands round specific pins. What is the total number of squares that can be made on a. . . .

It would be nice to have a strategy for disentangling any tangled ropes...

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?