Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

Delight your friends with this cunning trick! Can you explain how it works?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Here are two kinds of spirals for you to explore. What do you notice?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Nim-7 game for an adult and child. Who will be the one to take the last counter?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Can you explain the strategy for winning this game with any target?

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

This activity involves rounding four-digit numbers to the nearest thousand.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you find all the ways to get 15 at the top of this triangle of numbers?

This task follows on from Build it Up and takes the ideas into three dimensions!

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Can you work out how to win this game of Nim? Does it matter if you go first or second?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

It would be nice to have a strategy for disentangling any tangled ropes...

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.