Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Are these statements always true, sometimes true or never true?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

This activity involves rounding four-digit numbers to the nearest thousand.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

This challenge encourages you to explore dividing a three-digit number by a single-digit number.

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Got It game for an adult and child. How can you play so that you know you will always win?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

What happens when you round these three-digit numbers to the nearest 100?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Can you explain the strategy for winning this game with any target?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

Here are two kinds of spirals for you to explore. What do you notice?

Can you find all the ways to get 15 at the top of this triangle of numbers?

An investigation that gives you the opportunity to make and justify predictions.

Are these statements relating to odd and even numbers always true, sometimes true or never true?

This task follows on from Build it Up and takes the ideas into three dimensions!

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Nim-7 game for an adult and child. Who will be the one to take the last counter?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.