Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Delight your friends with this cunning trick! Can you explain how it works?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

This task follows on from Build it Up and takes the ideas into three dimensions!

Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?

Can you find all the ways to get 15 at the top of this triangle of numbers?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Can you describe this route to infinity? Where will the arrows take you next?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

This activity involves rounding four-digit numbers to the nearest thousand.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Here are two kinds of spirals for you to explore. What do you notice?

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Find out what a "fault-free" rectangle is and try to make some of your own.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Explore the effect of reflecting in two parallel mirror lines.

Can you explain the strategy for winning this game with any target?