If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

It starts quite simple but great opportunities for number discoveries and patterns!

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

What would you get if you continued this sequence of fraction sums? 1/2 + 2/1 = 2/3 + 3/2 = 3/4 + 4/3 =

Take any two positive numbers. Calculate the arithmetic and geometric means. Repeat the calculations to generate a sequence of arithmetic means and geometric means. Make a note of what happens to the. . . .

It would be nice to have a strategy for disentangling any tangled ropes...

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

The sum of the numbers 4 and 1 [1/3] is the same as the product of 4 and 1 [1/3]; that is to say 4 + 1 [1/3] = 4 × 1 [1/3]. What other numbers have the sum equal to the product and can this be so for. . . .

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

This activity involves rounding four-digit numbers to the nearest thousand.

Can you describe this route to infinity? Where will the arrows take you next?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Can you find all the ways to get 15 at the top of this triangle of numbers?

This task follows on from Build it Up and takes the ideas into three dimensions!

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Charlie has made a Magic V. Can you use his example to make some more? And how about Magic Ls, Ns and Ws?

Find out what a "fault-free" rectangle is and try to make some of your own.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Here are two kinds of spirals for you to explore. What do you notice?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Can you find sets of sloping lines that enclose a square?

The Egyptians expressed all fractions as the sum of different unit fractions. Here is a chance to explore how they could have written different fractions.

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.