Are these statements relating to calculation and properties of shapes always true, sometimes true or never true?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Two children made up a game as they walked along the garden paths. Can you find out their scores? Can you find some paths of your own?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Here are two kinds of spirals for you to explore. What do you notice?

How many centimetres of rope will I need to make another mat just like the one I have here?

Use your addition and subtraction skills, combined with some strategic thinking, to beat your partner at this game.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

This activity involves rounding four-digit numbers to the nearest thousand.

Find a route from the outside to the inside of this square, stepping on as many tiles as possible.

Are these statements relating to odd and even numbers always true, sometimes true or never true?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

This task follows on from Build it Up and takes the ideas into three dimensions!

Are these statements always true, sometimes true or never true?

Can you find all the ways to get 15 at the top of this triangle of numbers?

Strike it Out game for an adult and child. Can you stop your partner from being able to go?

Nim-7 game for an adult and child. Who will be the one to take the last counter?

This challenge is about finding the difference between numbers which have the same tens digit.

In this calculation, the box represents a missing digit. What could the digit be? What would the solution be in each case?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Got It game for an adult and child. How can you play so that you know you will always win?

Watch this video to see how to roll the dice. Now it's your turn! What do you notice about the dice numbers you have recorded?

In this game for two players, the idea is to take it in turns to choose 1, 3, 5 or 7. The winner is the first to make the total 37.

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

One block is needed to make an up-and-down staircase, with one step up and one step down. How many blocks would be needed to build an up-and-down staircase with 5 steps up and 5 steps down?

Put the numbers 1, 2, 3, 4, 5, 6 into the squares so that the numbers on each circle add up to the same amount. Can you find the rule for giving another set of six numbers?

Try adding together the dates of all the days in one week. Now multiply the first date by 7 and add 21. Can you explain what happens?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Can you work out how to win this game of Nim? Does it matter if you go first or second?

For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Can you dissect an equilateral triangle into 6 smaller ones? What number of smaller equilateral triangles is it NOT possible to dissect a larger equilateral triangle into?

In how many different ways can you break up a stick of 7 interlocking cubes? Now try with a stick of 8 cubes and a stick of 6 cubes.

In a Magic Square all the rows, columns and diagonals add to the 'Magic Constant'. How would you change the magic constant of this square?

We can arrange dots in a similar way to the 5 on a dice and they usually sit quite well into a rectangular shape. How many altogether in this 3 by 5? What happens for other sizes?

An article for teachers and pupils that encourages you to look at the mathematical properties of similar games.

Compare the numbers of particular tiles in one or all of these three designs, inspired by the floor tiles of a church in Cambridge.

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?