The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

A picture is made by joining five small quadrilaterals together to make a large quadrilateral. Is it possible to draw a similar picture if all the small quadrilaterals are cyclic?

The tangles created by the twists and turns of the Conway rope trick are surprisingly symmetrical. Here's why!

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

Prove that if n is a triangular number then 8n+1 is a square number. Prove, conversely, that if 8n+1 is a square number then n is a triangular number.

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

This is the second article on right-angled triangles whose edge lengths are whole numbers.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

If you think that mathematical proof is really clearcut and universal then you should read this article.

Four jewellers share their stock. Can you work out the relative values of their gems?

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

I am exactly n times my daughter's age. In m years I shall be ... How old am I?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

What fractions can you divide the diagonal of a square into by simple folding?

Can you make sense of these three proofs of Pythagoras' Theorem?

Can you rearrange the cards to make a series of correct mathematical statements?

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

This article stems from research on the teaching of proof and offers guidance on how to move learners from focussing on experimental arguments to mathematical arguments and deductive reasoning.

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

A introduction to how patterns can be deceiving, and what is and is not a proof.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?