How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

Investigate the sequences obtained by starting with any positive 2 digit number (10a+b) and repeatedly using the rule 10a+b maps to 10b-a to get the next number in the sequence.

Which set of numbers that add to 10 have the largest product?

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Factorial one hundred (written 100!) has 24 noughts when written in full and that 1000! has 249 noughts? Convince yourself that the above is true. Perhaps your methodology will help you find the. . . .

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

A introduction to how patterns can be deceiving, and what is and is not a proof.

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

Three frogs hopped onto the table. A red frog on the left a green in the middle and a blue frog on the right. Then frogs started jumping randomly over any adjacent frog. Is it possible for them to. . . .

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

Show that if three prime numbers, all greater than 3, form an arithmetic progression then the common difference is divisible by 6. What if one of the terms is 3?

From a group of any 4 students in a class of 30, each has exchanged Christmas cards with the other three. Show that some students have exchanged cards with all the other students in the class. How. . . .

A paradox is a statement that seems to be both untrue and true at the same time. This article looks at a few examples and challenges you to investigate them for yourself.

Euler found four whole numbers such that the sum of any two of the numbers is a perfect square. Three of the numbers that he found are a = 18530, b=65570, c=45986. Find the fourth number, x. You. . . .

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

Prove Pythagoras' Theorem using enlargements and scale factors.

Points A, B and C are the centres of three circles, each one of which touches the other two. Prove that the perimeter of the triangle ABC is equal to the diameter of the largest circle.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

It is obvious that we can fit four circles of diameter 1 unit in a square of side 2 without overlapping. What is the smallest square into which we can fit 3 circles of diameter 1 unit?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?