# Search by Topic

#### Resources tagged with Mathematical reasoning & proof similar to Percentage Swap:

Filter by: Content type:
Stage:
Challenge level:

### There are 179 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

### Unit Fractions

##### Stage: 3 Challenge Level:

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

### Multiplication Square

##### Stage: 3 Challenge Level:

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

### Eleven

##### Stage: 3 Challenge Level:

Replace each letter with a digit to make this addition correct.

### A Biggy

##### Stage: 4 Challenge Level:

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

### The Pillar of Chios

##### Stage: 3 Challenge Level:

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

### Mediant

##### Stage: 4 Challenge Level:

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

### AMGM

##### Stage: 4 Challenge Level:

Can you use the diagram to prove the AM-GM inequality?

### Lens Angle

##### Stage: 4 Challenge Level:

Find the missing angle between the two secants to the circle when the two angles at the centre subtended by the arcs created by the intersections of the secants and the circle are 50 and 120 degrees.

### Archimedes and Numerical Roots

##### Stage: 4 Challenge Level:

The problem is how did Archimedes calculate the lengths of the sides of the polygons which needed him to be able to calculate square roots?

### Chocolate Maths

##### Stage: 3 Challenge Level:

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

### Is it Magic or Is it Maths?

##### Stage: 3 Challenge Level:

Here are three 'tricks' to amaze your friends. But the really clever trick is explaining to them why these 'tricks' are maths not magic. Like all good magicians, you should practice by trying. . . .

### More Mathematical Mysteries

##### Stage: 3 Challenge Level:

Write down a three-digit number Change the order of the digits to get a different number Find the difference between the two three digit numbers Follow the rest of the instructions then try. . . .

### Always the Same

##### Stage: 3 Challenge Level:

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

##### Stage: 3 Challenge Level:

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

### Pythagoras Proofs

##### Stage: 4 Challenge Level:

Can you make sense of these three proofs of Pythagoras' Theorem?

### Leonardo's Problem

##### Stage: 4 and 5 Challenge Level:

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

### Janine's Conjecture

##### Stage: 4 Challenge Level:

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

### Unit Interval

##### Stage: 4 and 5 Challenge Level:

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

### More Number Pyramids

##### Stage: 3 and 4 Challenge Level:

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

### Breaking the Equation ' Empirical Argument = Proof '

##### Stage: 2, 3, 4 and 5

This article stems from research on the teaching of proof and offers guidance on how to move learners from focussing on experimental arguments to mathematical arguments and deductive reasoning.

### Why 24?

##### Stage: 4 Challenge Level:

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

### Folding Fractions

##### Stage: 4 Challenge Level:

What fractions can you divide the diagonal of a square into by simple folding?

### Take Three from Five

##### Stage: 3 and 4 Challenge Level:

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

### Pythagorean Triples II

##### Stage: 3 and 4

This is the second article on right-angled triangles whose edge lengths are whole numbers.

### Whole Number Dynamics II

##### Stage: 4 and 5

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

### Whole Number Dynamics III

##### Stage: 4 and 5

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

### Natural Sum

##### Stage: 4 Challenge Level:

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

##### Stage: 4 Challenge Level:

Four jewellers possessing respectively eight rubies, ten saphires, a hundred pearls and five diamonds, presented, each from his own stock, one apiece to the rest in token of regard; and they. . . .

### Angle Trisection

##### Stage: 4 Challenge Level:

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

### Whole Number Dynamics I

##### Stage: 4 and 5

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

### Pythagorean Triples I

##### Stage: 3 and 4

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

### Postage

##### Stage: 4 Challenge Level:

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

### DOTS Division

##### Stage: 4 Challenge Level:

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

### There's a Limit

##### Stage: 4 and 5 Challenge Level:

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

### Sixational

##### Stage: 4 and 5 Challenge Level:

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

### Top-heavy Pyramids

##### Stage: 3 Challenge Level:

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

### Common Divisor

##### Stage: 4 Challenge Level:

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

### Happy Numbers

##### Stage: 3 Challenge Level:

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

### Prime AP

##### Stage: 4 Challenge Level:

Show that if three prime numbers, all greater than 3, form an arithmetic progression then the common difference is divisible by 6. What if one of the terms is 3?

### Ratty

##### Stage: 3 Challenge Level:

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

### Long Short

##### Stage: 4 Challenge Level:

A quadrilateral inscribed in a unit circle has sides of lengths s1, s2, s3 and s4 where s1 ≤ s2 ≤ s3 ≤ s4. Find a quadrilateral of this type for which s1= sqrt2 and show s1 cannot. . . .

### Iffy Logic

##### Stage: 4 and 5 Challenge Level:

Can you rearrange the cards to make a series of correct mathematical statements?

### Reverse to Order

##### Stage: 3 Challenge Level:

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

### Always Perfect

##### Stage: 4 Challenge Level:

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

### Square Mean

##### Stage: 4 Challenge Level:

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

### Picturing Pythagorean Triples

##### Stage: 4 and 5

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

### Perfectly Square

##### Stage: 4 Challenge Level:

The sums of the squares of three related numbers is also a perfect square - can you explain why?

### Three Frogs

##### Stage: 4 Challenge Level:

Three frogs hopped onto the table. A red frog on the left a green in the middle and a blue frog on the right. Then frogs started jumping randomly over any adjacent frog. Is it possible for them to. . . .

### Logic

##### Stage: 2 and 3

What does logic mean to us and is that different to mathematical logic? We will explore these questions in this article.

### Pareq Exists

##### Stage: 4 Challenge Level:

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.