The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest. . . .

Prove Pythagoras' Theorem using enlargements and scale factors.

Points A, B and C are the centres of three circles, each one of which touches the other two. Prove that the perimeter of the triangle ABC is equal to the diameter of the largest circle.

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

Make an eight by eight square, the layout is the same as a chessboard. You can print out and use the square below. What is the area of the square? Divide the square in the way shown by the red dashed. . . .

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

This is the second article on right-angled triangles whose edge lengths are whole numbers.

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

A circle has centre O and angle POR = angle QOR. Construct tangents at P and Q meeting at T. Draw a circle with diameter OT. Do P and Q lie inside, or on, or outside this circle?

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

Four identical right angled triangles are drawn on the sides of a square. Two face out, two face in. Why do the four vertices marked with dots lie on one line?

Can you make sense of the three methods to work out the area of the kite in the square?

Start with any triangle T1 and its inscribed circle. Draw the triangle T2 which has its vertices at the points of contact between the triangle T1 and its incircle. Now keep repeating this. . . .

The diagonal of a square intersects the line joining one of the unused corners to the midpoint of the opposite side. What do you notice about the line segments produced?

It is obvious that we can fit four circles of diameter 1 unit in a square of side 2 without overlapping. What is the smallest square into which we can fit 3 circles of diameter 1 unit?

Can you make sense of these three proofs of Pythagoras' Theorem?

A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

The circumcentres of four triangles are joined to form a quadrilateral. What do you notice about this quadrilateral as the dynamic image changes? Can you prove your conjecture?

What fractions can you divide the diagonal of a square into by simple folding?

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

An article which gives an account of some properties of magic squares.

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.

In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

A introduction to how patterns can be deceiving, and what is and is not a proof.

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

Show that if three prime numbers, all greater than 3, form an arithmetic progression then the common difference is divisible by 6. What if one of the terms is 3?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

Can you fit Ls together to make larger versions of themselves?

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.