Search by Topic

Resources tagged with Mathematical reasoning & proof similar to Equilateral Areas:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 177 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

problem icon

The Pillar of Chios

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

problem icon

Salinon

Stage: 4 Challenge Level: Challenge Level:1

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

problem icon

Zig Zag

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Four identical right angled triangles are drawn on the sides of a square. Two face out, two face in. Why do the four vertices marked with dots lie on one line?

problem icon

Pythagorean Triples I

Stage: 3 and 4

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

problem icon

Rhombus in Rectangle

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

problem icon

Multiplication Square

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

problem icon

Pythagoras Proofs

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you make sense of these three proofs of Pythagoras' Theorem?

problem icon

There's a Limit

Stage: 4 and 5 Challenge Level: Challenge Level:1

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

problem icon

Pythagorean Triples II

Stage: 3 and 4

This is the second article on right-angled triangles whose edge lengths are whole numbers.

problem icon

Round and Round

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

problem icon

Coins on a Plate

Stage: 3 Challenge Level: Challenge Level:1

Points A, B and C are the centres of three circles, each one of which touches the other two. Prove that the perimeter of the triangle ABC is equal to the diameter of the largest circle.

problem icon

Appearing Square

Stage: 3 Challenge Level: Challenge Level:1

Make an eight by eight square, the layout is the same as a chessboard. You can print out and use the square below. What is the area of the square? Divide the square in the way shown by the red dashed. . . .

problem icon

A Chordingly

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

problem icon

Rotating Triangle

Stage: 3 and 4 Challenge Level: Challenge Level:1

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

problem icon

Areas and Ratios

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

problem icon

Picturing Pythagorean Triples

Stage: 4 and 5

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

problem icon

Prime AP

Stage: 4 Challenge Level: Challenge Level:1

Show that if three prime numbers, all greater than 3, form an arithmetic progression then the common difference is divisible by 6. What if one of the terms is 3?

problem icon

Angle Trisection

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

problem icon

Whole Number Dynamics II

Stage: 4 and 5

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

problem icon

Whole Number Dynamics III

Stage: 4 and 5

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

problem icon

Whole Number Dynamics I

Stage: 4 and 5

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

problem icon

Sixational

Stage: 4 and 5 Challenge Level: Challenge Level:1

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

problem icon

Postage

Stage: 4 Challenge Level: Challenge Level:1

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

problem icon

Always Perfect

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

problem icon

Fitting In

Stage: 4 Challenge Level: Challenge Level:1

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest. . . .

problem icon

Proof: A Brief Historical Survey

Stage: 4 and 5

If you think that mathematical proof is really clearcut and universal then you should read this article.

problem icon

Picture Story

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

problem icon

Janine's Conjecture

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

problem icon

For What?

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

problem icon

Leonardo's Problem

Stage: 4 and 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

problem icon

Natural Sum

Stage: 4 Challenge Level: Challenge Level:1

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

problem icon

Gift of Gems

Stage: 4 Challenge Level: Challenge Level:1

Four jewellers possessing respectively eight rubies, ten saphires, a hundred pearls and five diamonds, presented, each from his own stock, one apiece to the rest in token of regard; and they. . . .

problem icon

A Knight's Journey

Stage: 4 and 5

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

problem icon

Common Divisor

Stage: 4 Challenge Level: Challenge Level:1

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

problem icon

Long Short

Stage: 4 Challenge Level: Challenge Level:1

A quadrilateral inscribed in a unit circle has sides of lengths s1, s2, s3 and s4 where s1 ≤ s2 ≤ s3 ≤ s4. Find a quadrilateral of this type for which s1= sqrt2 and show s1 cannot. . . .

problem icon

Square Mean

Stage: 4 Challenge Level: Challenge Level:1

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

problem icon

A Biggy

Stage: 4 Challenge Level: Challenge Level:1

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

problem icon

Impossible Sandwiches

Stage: 3, 4 and 5

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

problem icon

Take a Square II

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

What fractions can you divide the diagonal of a square into by simple folding?

problem icon

Breaking the Equation ' Empirical Argument = Proof '

Stage: 2, 3, 4 and 5

This article stems from research on the teaching of proof and offers guidance on how to move learners from focussing on experimental arguments to mathematical arguments and deductive reasoning.

problem icon

Iffy Logic

Stage: 4 Short Challenge Level: Challenge Level:1

Can you rearrange the cards to make a series of correct mathematical statements?

problem icon

The Great Weights Puzzle

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

problem icon

Some Circuits in Graph or Network Theory

Stage: 4 and 5

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

problem icon

Geometric Parabola

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

problem icon

L-triominoes

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

problem icon

Kite in a Square

Stage: 4 Challenge Level: Challenge Level:1

Can you make sense of the three methods to work out the area of the kite in the square?

problem icon

What Numbers Can We Make Now?

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

problem icon

Advent Calendar 2011 - Secondary

Stage: 3, 4 and 5 Challenge Level: Challenge Level:1

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

problem icon

A Long Time at the Till

Stage: 4 and 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

problem icon

Sprouts Explained

Stage: 2, 3, 4 and 5

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .