Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Can you make sense of these three proofs of Pythagoras' Theorem?

Find the missing angle between the two secants to the circle when the two angles at the centre subtended by the arcs created by the intersections of the secants and the circle are 50 and 120 degrees.

In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

If you think that mathematical proof is really clearcut and universal then you should read this article.

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

Can you find the areas of the trapezia in this sequence?

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

Four jewellers share their stock. Can you work out the relative values of their gems?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

An article which gives an account of some properties of magic squares.

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

This is the second article on right-angled triangles whose edge lengths are whole numbers.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!