Search by Topic

Resources tagged with Mathematical reasoning & proof similar to A One in Seven Chance:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 178 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

problem icon

What Numbers Can We Make Now?

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

problem icon

Adding All Nine

Stage: 3 Challenge Level: Challenge Level:1

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

problem icon

Take Three from Five

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

problem icon

Prime AP

Stage: 4 Challenge Level: Challenge Level:1

Show that if three prime numbers, all greater than 3, form an arithmetic progression then the common difference is divisible by 6. What if one of the terms is 3?

problem icon

Sixational

Stage: 4 and 5 Challenge Level: Challenge Level:1

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

problem icon

Elevenses

Stage: 3 Challenge Level: Challenge Level:1

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

problem icon

What Numbers Can We Make?

Stage: 3 Challenge Level: Challenge Level:1

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

problem icon

Even So

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

problem icon

Mod 3

Stage: 4 Challenge Level: Challenge Level:1

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

problem icon

Logic

Stage: 2 and 3

What does logic mean to us and is that different to mathematical logic? We will explore these questions in this article.

problem icon

Unit Fractions

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

problem icon

Thirty Nine, Seventy Five

Stage: 3 Challenge Level: Challenge Level:1

We have exactly 100 coins. There are five different values of coins. We have decided to buy a piece of computer software for 39.75. We have the correct money, not a penny more, not a penny less! Can. . . .

problem icon

Cross-country Race

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Eight children enter the autumn cross-country race at school. How many possible ways could they come in at first, second and third places?

problem icon

For What?

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

problem icon

Cycle It

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

problem icon

A Biggy

Stage: 4 Challenge Level: Challenge Level:1

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

problem icon

Greetings

Stage: 3 Challenge Level: Challenge Level:1

From a group of any 4 students in a class of 30, each has exchanged Christmas cards with the other three. Show that some students have exchanged cards with all the other students in the class. How. . . .

problem icon

Ratty

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

problem icon

Postage

Stage: 4 Challenge Level: Challenge Level:1

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

problem icon

One O Five

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

You can work out the number someone else is thinking of as follows. Ask a friend to think of any natural number less than 100. Then ask them to tell you the remainders when this number is divided by. . . .

problem icon

More Marbles

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

I start with a red, a blue, a green and a yellow marble. I can trade any of my marbles for three others, one of each colour. Can I end up with exactly two marbles of each colour?

problem icon

Growing Ls

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you fit Ls together to make larger versions of themselves?

problem icon

Marbles

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

I start with a red, a green and a blue marble. I can trade any of my marbles for two others, one of each colour. Can I end up with five more blue marbles than red after a number of such trades?

problem icon

A Long Time at the Till

Stage: 4 and 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

problem icon

Pyramids

Stage: 3 Challenge Level: Challenge Level:1

What are the missing numbers in the pyramids?

problem icon

Tri-colour

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Six points are arranged in space so that no three are collinear. How many line segments can be formed by joining the points in pairs?

problem icon

Always the Same

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

problem icon

Cyclic Quadrilaterals

Stage: 3 Challenge Level: Challenge Level:1

What can you say about the angles on opposite vertices of any cyclic quadrilateral? Working on the building blocks will give you insights that may help you to explain what is special about them.

problem icon

Pythagoras Proofs

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you make sense of these three proofs of Pythagoras' Theorem?

problem icon

Reverse to Order

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Take any two digit number, for example 58. What do you have to do to reverse the order of the digits? Can you find a rule for reversing the order of digits for any two digit number?

problem icon

Always Perfect

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

problem icon

Power Quady

Stage: 4 Challenge Level: Challenge Level:1

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

problem icon

Why 24?

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

problem icon

Pythagorean Triples I

Stage: 3 and 4

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

problem icon

Angle Trisection

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

problem icon

Breaking the Equation ' Empirical Argument = Proof '

Stage: 2, 3, 4 and 5

This article stems from research on the teaching of proof and offers guidance on how to move learners from focussing on experimental arguments to mathematical arguments and deductive reasoning.

problem icon

Power Mad!

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

problem icon

Take a Square II

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

What fractions can you divide the diagonal of a square into by simple folding?

problem icon

L-triominoes

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

problem icon

Square Mean

Stage: 4 Challenge Level: Challenge Level:1

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

problem icon

There's a Limit

Stage: 4 and 5 Challenge Level: Challenge Level:1

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

problem icon

N000ughty Thoughts

Stage: 4 Challenge Level: Challenge Level:1

Factorial one hundred (written 100!) has 24 noughts when written in full and that 1000! has 249 noughts? Convince yourself that the above is true. Perhaps your methodology will help you find the. . . .

problem icon

Cosines Rule

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Three points A, B and C lie in this order on a line, and P is any point in the plane. Use the Cosine Rule to prove the following statement.

problem icon

Gift of Gems

Stage: 4 Challenge Level: Challenge Level:1

Four jewellers possessing respectively eight rubies, ten saphires, a hundred pearls and five diamonds, presented, each from his own stock, one apiece to the rest in token of regard; and they. . . .

problem icon

Our Ages

Stage: 4 Challenge Level: Challenge Level:1

I am exactly n times my daughter's age. In m years I shall be exactly (n-1) times her age. In m2 years I shall be exactly (n-2) times her age. After that I shall never again be an exact multiple of. . . .

problem icon

Advent Calendar 2011 - Secondary

Stage: 3, 4 and 5 Challenge Level: Challenge Level:1

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

problem icon

Pythagorean Triples II

Stage: 3 and 4

This is the second article on right-angled triangles whose edge lengths are whole numbers.

problem icon

Common Divisor

Stage: 4 Challenge Level: Challenge Level:1

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

problem icon

Long Short

Stage: 4 Challenge Level: Challenge Level:1

A quadrilateral inscribed in a unit circle has sides of lengths s1, s2, s3 and s4 where s1 ≤ s2 ≤ s3 ≤ s4. Find a quadrilateral of this type for which s1= sqrt2 and show s1 cannot. . . .

problem icon

Top-heavy Pyramids

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.